Skip to content

MeshTransmissionMaterial special features doesnt work ( anisotropicBlur / chromaticAberation / displacement / etc.. ) #45

@Makio64

Description

@Makio64

The MeshTransmissionMaterial works exactly like the PhysicalMeshMaterial and all special feature didnt work i try in both threejs v150 & v158, result is the same as you can see on these screenshot :

with no displacement, work as the PhysicalMeshMaterial and special feature didnt work
image

the displacement create this noise and is correctly animated on time.
image

my code for creating the glassMaterial

		const fboMain = useFBO(512, 512)

		let gl = renderer

		this.glassMaterial = new MeshTransmissionMaterial({anisotropicBlur: 0.5,})
		this.discardMaterial = new MeshDiscardMaterial()
		this.glassMaterial.buffer = fboMain.texture

		stage.onUpdate.add((dt)=>{
			this.glassMaterial.time += dt * 0.001

			// prepare renderer
			let oldTone = gl.toneMapping
			let oldBg = scene.background
			gl.toneMapping = NoToneMapping

			stage3d.scene.traverse((child) => {
				if (child.material && child.material == this.glassMaterial) {
					child.material = this.discardMaterial
				}
			})

			gl.setRenderTarget(fboMain)
			gl.render(scene, camera)

			// reset previous state
			stage3d.scene.traverse((child) => {
				if (child.material && child.material == this.discardMaterial) {
					child.material = this.glassMaterial
				}
			})

			gl.setRenderTarget(null)
			scene.background = oldBg
			gl.toneMapping = oldTone

		})
  • three version: v150 & 158
  • @pmndrs/vanilla version: latest ^1.13.3
  • node version: v20.5.0
  • npm (or yarn) version: pnpm 8.8.0

Problem description:

It seems some part of the shader with the special stuffs are not working

  • the FBO is correctly working as we can see the pixelisation due to the low resolution

  • I double check the uniforms seems to be correctly set on the Material

  • the defines looks also fine {PHYSICAL: "", STANDARD: "",USE_TRANSMISSION:""}

  • And I also check the final fragment shader but I coudn't find an error here


      uniform float chromaticAberration;
      uniform float anisotropicBlur;
      uniform float time;
      uniform float distortion;
      uniform float distortionScale;
      uniform float temporalDistortion;
      uniform sampler2D buffer;

      vec3 random3(vec3 c) {
        float j = 4096.0*sin(dot(c,vec3(17.0, 59.4, 15.0)));
        vec3 r;
        r.z = fract(512.0*j);
        j *= .125;
        r.x = fract(512.0*j);
        j *= .125;
        r.y = fract(512.0*j);
        return r-0.5;
      }

      float seed = 0.0;
      uint hash( uint x ) {
        x += ( x << 10u );
        x ^= ( x >>  6u );
        x += ( x <<  3u );
        x ^= ( x >> 11u );
        x += ( x << 15u );
        return x;
      }

      // Compound versions of the hashing algorithm I whipped together.
      uint hash( uvec2 v ) { return hash( v.x ^ hash(v.y)                         ); }
      uint hash( uvec3 v ) { return hash( v.x ^ hash(v.y) ^ hash(v.z)             ); }
      uint hash( uvec4 v ) { return hash( v.x ^ hash(v.y) ^ hash(v.z) ^ hash(v.w) ); }

      // Construct a float with half-open range [0:1] using low 23 bits.
      // All zeroes yields 0.0, all ones yields the next smallest representable value below 1.0.
      float floatConstruct( uint m ) {
        const uint ieeeMantissa = 0x007FFFFFu; // binary32 mantissa bitmask
        const uint ieeeOne      = 0x3F800000u; // 1.0 in IEEE binary32
        m &= ieeeMantissa;                     // Keep only mantissa bits (fractional part)
        m |= ieeeOne;                          // Add fractional part to 1.0
        float  f = uintBitsToFloat( m );       // Range [1:2]
        return f - 1.0;                        // Range [0:1]
      }

      // Pseudo-random value in half-open range [0:1].
      float random( float x ) { return floatConstruct(hash(floatBitsToUint(x))); }
      float random( vec2  v ) { return floatConstruct(hash(floatBitsToUint(v))); }
      float random( vec3  v ) { return floatConstruct(hash(floatBitsToUint(v))); }
      float random( vec4  v ) { return floatConstruct(hash(floatBitsToUint(v))); }

      float rand() {
        float result = random(vec3(gl_FragCoord.xy, seed));
        seed += 1.0;
        return result;
      }

      const float F3 =  0.3333333;
      const float G3 =  0.1666667;

      float snoise(vec3 p) {
        vec3 s = floor(p + dot(p, vec3(F3)));
        vec3 x = p - s + dot(s, vec3(G3));
        vec3 e = step(vec3(0.0), x - x.yzx);
        vec3 i1 = e*(1.0 - e.zxy);
        vec3 i2 = 1.0 - e.zxy*(1.0 - e);
        vec3 x1 = x - i1 + G3;
        vec3 x2 = x - i2 + 2.0*G3;
        vec3 x3 = x - 1.0 + 3.0*G3;
        vec4 w, d;
        w.x = dot(x, x);
        w.y = dot(x1, x1);
        w.z = dot(x2, x2);
        w.w = dot(x3, x3);
        w = max(0.6 - w, 0.0);
        d.x = dot(random3(s), x);
        d.y = dot(random3(s + i1), x1);
        d.z = dot(random3(s + i2), x2);
        d.w = dot(random3(s + 1.0), x3);
        w *= w;
        w *= w;
        d *= w;
        return dot(d, vec4(52.0));
      }

      float snoiseFractal(vec3 m) {
        return 0.5333333* snoise(m)
              +0.2666667* snoise(2.0*m)
              +0.1333333* snoise(4.0*m)
              +0.0666667* snoise(8.0*m);
      }
#define STANDARD
#ifdef PHYSICAL
	#define IOR
	#define SPECULAR
#endif
uniform vec3 diffuse;
uniform vec3 emissive;
uniform float roughness;
uniform float metalness;
uniform float opacity;
#ifdef IOR
	uniform float ior;
#endif
#ifdef SPECULAR
	uniform float specularIntensity;
	uniform vec3 specularColor;
	#ifdef USE_SPECULARINTENSITYMAP
		uniform sampler2D specularIntensityMap;
	#endif
	#ifdef USE_SPECULARCOLORMAP
		uniform sampler2D specularColorMap;
	#endif
#endif
#ifdef USE_CLEARCOAT
	uniform float clearcoat;
	uniform float clearcoatRoughness;
#endif
#ifdef USE_IRIDESCENCE
	uniform float iridescence;
	uniform float iridescenceIOR;
	uniform float iridescenceThicknessMinimum;
	uniform float iridescenceThicknessMaximum;
#endif
#ifdef USE_SHEEN
	uniform vec3 sheenColor;
	uniform float sheenRoughness;
	#ifdef USE_SHEENCOLORMAP
		uniform sampler2D sheenColorMap;
	#endif
	#ifdef USE_SHEENROUGHNESSMAP
		uniform sampler2D sheenRoughnessMap;
	#endif
#endif
varying vec3 vViewPosition;
#include <common>
#include <packing>
#include <dithering_pars_fragment>
#include <color_pars_fragment>
#include <uv_pars_fragment>
#include <uv2_pars_fragment>
#include <map_pars_fragment>
#include <alphamap_pars_fragment>
#include <alphatest_pars_fragment>
#include <aomap_pars_fragment>
#include <lightmap_pars_fragment>
#include <emissivemap_pars_fragment>
#include <bsdfs>
#include <iridescence_fragment>
#include <cube_uv_reflection_fragment>
#include <envmap_common_pars_fragment>
#include <envmap_physical_pars_fragment>
#include <fog_pars_fragment>
#include <lights_pars_begin>
#include <normal_pars_fragment>
#include <lights_physical_pars_fragment>

        #ifdef USE_TRANSMISSION
          // Transmission code is based on glTF-Sampler-Viewer
          // https://github.com/KhronosGroup/glTF-Sample-Viewer
          uniform float _transmission;
          uniform float thickness;
          uniform float attenuationDistance;
          uniform vec3 attenuationColor;
          #ifdef USE_TRANSMISSIONMAP
            uniform sampler2D transmissionMap;
          #endif
          #ifdef USE_THICKNESSMAP
            uniform sampler2D thicknessMap;
          #endif
          uniform vec2 transmissionSamplerSize;
          uniform sampler2D transmissionSamplerMap;
          uniform mat4 modelMatrix;
          uniform mat4 projectionMatrix;
          varying vec3 vWorldPosition;
          vec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {
            // Direction of refracted light.
            vec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );
            // Compute rotation-independant scaling of the model matrix.
            vec3 modelScale;
            modelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );
            modelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );
            modelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );
            // The thickness is specified in local space.
            return normalize( refractionVector ) * thickness * modelScale;
          }
          float applyIorToRoughness( const in float roughness, const in float ior ) {
            // Scale roughness with IOR so that an IOR of 1.0 results in no microfacet refraction and
            // an IOR of 1.5 results in the default amount of microfacet refraction.
            return roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );
          }
          vec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {
            float framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );
            #ifdef USE_SAMPLER
              #ifdef texture2DLodEXT
                return texture2DLodEXT(transmissionSamplerMap, fragCoord.xy, framebufferLod);
              #else
                return texture2D(transmissionSamplerMap, fragCoord.xy, framebufferLod);
              #endif
            #else
              return texture2D(buffer, fragCoord.xy);
            #endif
          }
          vec3 applyVolumeAttenuation( const in vec3 radiance, const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {
            if ( isinf( attenuationDistance ) ) {
              // Attenuation distance is +∞, i.e. the transmitted color is not attenuated at all.
              return radiance;
            } else {
              // Compute light attenuation using Beer's law.
              vec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;
              vec3 transmittance = exp( - attenuationCoefficient * transmissionDistance ); // Beer's law
              return transmittance * radiance;
            }
          }
          vec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,
            const in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,
            const in mat4 viewMatrix, const in mat4 projMatrix, const in float ior, const in float thickness,
            const in vec3 attenuationColor, const in float attenuationDistance ) {
            vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );
            vec3 refractedRayExit = position + transmissionRay;
            // Project refracted vector on the framebuffer, while mapping to normalized device coordinates.
            vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );
            vec2 refractionCoords = ndcPos.xy / ndcPos.w;
            refractionCoords += 1.0;
            refractionCoords /= 2.0;
            // Sample framebuffer to get pixel the refracted ray hits.
            vec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );
            vec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );
            // Get the specular component.
            vec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );
            return vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );
          }
        #endif

#include <shadowmap_pars_fragment>
#include <bumpmap_pars_fragment>
#include <normalmap_pars_fragment>
#include <clearcoat_pars_fragment>
#include <iridescence_pars_fragment>
#include <roughnessmap_pars_fragment>
#include <metalnessmap_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
	#include <clipping_planes_fragment>
	vec4 diffuseColor = vec4( diffuse, opacity );
	ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );
	vec3 totalEmissiveRadiance = emissive;
	#include <logdepthbuf_fragment>
	#include <map_fragment>
	#include <color_fragment>
	#include <alphamap_fragment>
	#include <alphatest_fragment>
	#include <roughnessmap_fragment>
	#include <metalnessmap_fragment>
	#include <normal_fragment_begin>
	#include <normal_fragment_maps>
	#include <clearcoat_normal_fragment_begin>
	#include <clearcoat_normal_fragment_maps>
	#include <emissivemap_fragment>
	#include <lights_physical_fragment>
	#include <lights_fragment_begin>
	#include <lights_fragment_maps>
	#include <lights_fragment_end>
	#include <aomap_fragment>
	vec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;
	vec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;
	
        // Improve the refraction to use the world pos
        material.transmission = _transmission;
        material.transmissionAlpha = 1.0;
        material.thickness = thickness;
        material.attenuationDistance = attenuationDistance;
        material.attenuationColor = attenuationColor;
        #ifdef USE_TRANSMISSIONMAP
          material.transmission *= texture2D( transmissionMap, vUv ).r;
        #endif
        #ifdef USE_THICKNESSMAP
          material.thickness *= texture2D( thicknessMap, vUv ).g;
        #endif

        vec3 pos = vWorldPosition;
        vec3 v = normalize( cameraPosition - pos );
        vec3 n = inverseTransformDirection( normal, viewMatrix );
        vec3 transmission = vec3(0.0);
        float transmissionR, transmissionB, transmissionG;
        float randomCoords = rand();
        float thickness_smear = thickness * max(pow(roughnessFactor, 0.33), anisotropicBlur);
        vec3 distortionNormal = vec3(0.0);
        vec3 temporalOffset = vec3(time, -time, -time) * temporalDistortion;
        if (distortion > 0.0) {
          distortionNormal = distortion * vec3(snoiseFractal(vec3((pos * distortionScale + temporalOffset))), snoiseFractal(vec3(pos.zxy * distortionScale - temporalOffset)), snoiseFractal(vec3(pos.yxz * distortionScale + temporalOffset)));
        }
        for (float i = 0.0; i < 6.0; i ++) {
          vec3 sampleNorm = normalize(n + roughnessFactor * roughnessFactor * 2.0 * normalize(vec3(rand() - 0.5, rand() - 0.5, rand() - 0.5)) * pow(rand(), 0.33) + distortionNormal);
          transmissionR = getIBLVolumeRefraction(
            sampleNorm, v, material.roughness, material.diffuseColor, material.specularColor, material.specularF90,
            pos, modelMatrix, viewMatrix, projectionMatrix, material.ior, material.thickness  + thickness_smear * (i + randomCoords) / float(6),
            material.attenuationColor, material.attenuationDistance
          ).r;
          transmissionG = getIBLVolumeRefraction(
            sampleNorm, v, material.roughness, material.diffuseColor, material.specularColor, material.specularF90,
            pos, modelMatrix, viewMatrix, projectionMatrix, material.ior  * (1.0 + chromaticAberration * (i + randomCoords) / float(6)) , material.thickness + thickness_smear * (i + randomCoords) / float(6),
            material.attenuationColor, material.attenuationDistance
          ).g;
          transmissionB = getIBLVolumeRefraction(
            sampleNorm, v, material.roughness, material.diffuseColor, material.specularColor, material.specularF90,
            pos, modelMatrix, viewMatrix, projectionMatrix, material.ior * (1.0 + 2.0 * chromaticAberration * (i + randomCoords) / float(6)), material.thickness + thickness_smear * (i + randomCoords) / float(6),
            material.attenuationColor, material.attenuationDistance
          ).b;
          transmission.r += transmissionR;
          transmission.g += transmissionG;
          transmission.b += transmissionB;
        }
        transmission /= 6.0;
        totalDiffuse = mix( totalDiffuse, transmission.rgb, material.transmission );

	vec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;
	#ifdef USE_SHEEN
		float sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );
		outgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;
	#endif
	#ifdef USE_CLEARCOAT
		float dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );
		vec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );
		outgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;
	#endif
	#include <output_fragment>
	#include <tonemapping_fragment>
	#include <encodings_fragment>
	#include <fog_fragment>
	#include <premultiplied_alpha_fragment>
	#include <dithering_fragment>
}

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions